Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
3 Biotech ; 13(11): 347, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37750167

RESUMO

The study presents the genome analysis of a new Pseudomonas sp. (SWRIQ11), which can alleviate salinity stress effects on growth of olive seedlings in greenhouse study. The strain SWRIQ11 can tolerate salinity up to 6%, produce siderophores, indole acetic acid (IAA), aminocyclopropane-1-carboxylate (ACC) deaminase, and has the phosphate-solubilizing capability. The SWRIQ11 genome contained an assembly size of 6,196,390 bp with a GC content of 60.1%. According to derived indices based on whole-genome sequences for species delineation, including tetra nucleotide usage patterns (TETRA), genome-to-genome distance (GGDC), and average nucleotide identity (ANI), Pseudomonas sp. SWRIQ11 can be considered a novel species candidate. The phylogenetic analysis revealed SWRIQ11 clusters with Pseudomonas tehranensis SWRI196 in the same clade. The SWRIQ11 genome was rich in genes related to stress sensing, signaling, and response, chaperones, motility, attachments, colonization, and enzymes for degrading plant-derived carbohydrates. Furthermore, the genes for production of exopolysaccharides, osmoprotectants, phytohormones, and ACC deaminase, ion homeostasis, nutrient acquisition, and antioxidant defenses were identified in the SWRIQ11 genome. The results of genome analysis (identification of more than 825 CDSs related to plant growth-promoting and stress-alleviating traits in the SWRIQ11 genome which is more than 15% of its total CDSs) are in accordance with laboratory and greenhouse experiments assigning the Pseudomonas sp. SWRIQ11 as a halotolerant plant growth-promoting bacterium (PGPB). This research highlights the potential safe application of this new PGPB species in agriculture as a potent biofertilizer.

2.
Front Genet ; 14: 1049608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139239

RESUMO

The application of plant growth-promoting bacteria (PGPB) is vital for sustainable agriculture with continuous world population growth and an increase in soil salinity. Salinity is one of the severe abiotic stresses which lessens the productivity of agricultural lands. Plant growth-promoting bacteria are key players in solving this problem and can mitigate salinity stress. The highest of reported halotolerant Plant growth-promoting bacteria belonged to Firmicutes (approximately 50%), Proteobacteria (40%), and Actinobacteria (10%), respectively. The most dominant genera of halotolerant plant growth-promoting bacteria are Bacillus and Pseudomonas. Currently, the identification of new plant growth-promoting bacteria with special beneficial properties is increasingly needed. Moreover, for the effective use of plant growth-promoting bacteria in agriculture, the unknown molecular aspects of their function and interaction with plants must be defined. Omics and meta-omics studies can unreveal these unknown genes and pathways. However, more accurate omics studies need a detailed understanding of so far known molecular mechanisms of plant stress protection by plant growth-promoting bacteria. In this review, the molecular basis of salinity stress mitigation by plant growth-promoting bacteria is presented, the identified genes in the genomes of 20 halotolerant plant growth-promoting bacteria are assessed, and the prevalence of their involved genes is highlighted. The genes related to the synthesis of indole acetic acid (IAA) (70%), siderophores (60%), osmoprotectants (80%), chaperons (40%), 1-aminocyclopropane-1-carboxylate (ACC) deaminase (50%), and antioxidants (50%), phosphate solubilization (60%), and ion homeostasis (80%) were the most common detected genes in the genomes of evaluated halotolerant plant growth-promoting and salinity stress-alleviating bacteria. The most prevalent genes can be applied as candidates for designing molecular markers for screening of new halotolerant plant growth-promoting bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...